An element in intron 1 of the CFTR gene augments intestinal expression in vivo.

نویسندگان

  • R K Rowntree
  • G Vassaux
  • T L McDowell
  • S Howe
  • A McGuigan
  • M Phylactides
  • C Huxley
  • A Harris
چکیده

The elements controlling the complex developmental and tissue-specific expression of the cystic fibrosis transmembrane conductance regulator (CFTR) gene lie outside the basal promoter region and have not been characterized. We previously identified a tissue-specific DNase I hypersensitive site (DHS) in intron 1 (185 + 10 kb) of the CFTR gene. Here we show that removal of the core element abolishes the activity of this DHS in transient transfection assays of reporter/enhancer gene constructs. We then compared expression from a 310 kb yeast artificial chromosome (YAC) that contains the entire CFTR gene with expression from the same YAC from which the DHS element had been deleted. Stable transfection of a human colon carcinoma cell line showed that transcription from the deleted YAC was reduced by approximately 60%. In transgenic mice, deletion of the intron 1 DHS had no effect on expression in the lung, but reduced expression in the intestine by approximately 60%. Thus, the regulatory element associated with the intron 1 DHS is tissue-specific and is required for normal CFTR expression levels in the intestinal epithelium in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A complex intronic enhancer regulates expression of the CFTR gene by direct interaction with the promoter

Genes can maintain spatiotemporal expression patterns by long-range interactions between cis-acting elements. The cystic fibrosis transmembrane conductance regulator gene (CFTR) is expressed primarily in epithelial cells. An element located within a DNase I-hypersensitive site (DHS) 10 kb into the first intron was previously shown to augment CFTR promoter activity in a tissue-specific manner. H...

متن کامل

Mutation and Rare Polymorphisms Insight in Exons 7 and 20 of CFTR Gene in Non-Caucasian Cystic Fibrosis Patients

Cystic fibrosis (CF) is the most common severe autosomal recessive disorder caused by a wide spectrum of mutations in the gene encoding for the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The frequencies, types and distributions of mutations vary widely between different populations and ethnic groups. The aim of this study was to perform a comprehensive analysis of the C...

متن کامل

The epigenetic signature of CFTR expression is co-ordinated via chromatin acetylation through a complex intronic element.

The CFTR (cystic fibrosis transmembrane conductance regulator) gene is a tightly regulated and differentially expressed transcript in many mucosal epithelial cell types. It appears that DNA sequence variations alone do not explain CFTR-related gastrointestinal disease patterns and that epigenetic modifiers influence CFTR expression. Our aim was to characterize the native chromatin environment i...

متن کامل

بررسی پلی‌مورفیسم تکرارهای T در افراد سالم و بیماران فیبروز کیستی در استان مازندران

Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal" mso-tsty...

متن کامل

P-122: The Effect of Beta Globin Intron on Human LH Hormone Expression in CHO Cells

Background Luteinizing hormone (LH) is a heterodimeric glycoprotein composed of alpha and beta subunits.This hormone is secreted from the pituitary gland. LH, in women triggers Menstrual cycle and ovulation. In men, LH stimulates production of testosterone, which plays a specialized role in sperm production. Up to day, LH hormone have produced in different ways such as codon optimization and al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 10 14  شماره 

صفحات  -

تاریخ انتشار 2001